Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 905865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979485

RESUMO

In the worldwide health threat posed by antibiotic-resistant bacterial pathogens, mobile genetic elements (MGEs) play a critical role in favoring the dissemination of resistance genes. Among them, the genomic island GIsul2 and the ISCR-related element CR2-sul2 unit are believed to participate in this dissemination. However, the mobility of the two elements has not yet been demonstrated. Here, we found that the GIsul2 and CR2-sul2 units can excise from the host chromosomal attachment site (attB) in Shigella flexneri. Through establishing a two-plasmid mobilization system composed of a donor plasmid bearing the GIsul2 and a trap plasmid harboring the attB in recA-deficient Escherichia coli, we reveal that the integrase of GIsul2 can perform the excision and integration of GIsul2 and CR2-sul2 unit by site-specific recombination between att core sites. Furthermore, we demonstrate that the integrase and the att sites are required for mobility through knockout experiments. Our findings provide the first experimental characterization of the mobility of GIsul2 and CR2-sul2 units mediated by integrase. They also suggest a potential and unappreciated role of the GIsul2 integrase family in the dissemination of CR2-sul2 units carrying various resistance determinants in between.

2.
Appl Environ Microbiol ; 87(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310720

RESUMO

The extensive use of antibiotics in hospitals and in the animal breeding industry has promoted antibiotic resistance in bacteria, which resulted in the emergence of a large number of antibiotic resistance genes in the intestinal tract of human and farmed animals. Genetic exchange of resistance genes between the two ecosystems is now well documented for pathogenic bacteria, but the repertoire of shared resistance genes in the commensal bacterial community and by which genetic modules they are disseminated are still unclear. By analyzing metagenomics data of human and pig intestinal samples both collected in Shenzhen, China, a set of 27 highly prevalent antibiotic resistance genes was found to be shared between human and pig intestinal microbiota. The mobile genetic context for 11 of these core antibiotic resistance genes could be identified by mining their carrying scaffolds constructed from the two datasets, leading to the detection of seven integrative and conjugative/mobilizable elements and two IS-related transposons. The comparison of the relative abundances between these detected mobile genetic elements and their associated antibiotic resistance genes revealed that for many genes, the estimated contribution of the mobile elements to the gene abundance differs strikingly depending on the host. These findings indicate that although some antibiotic resistance genes are ubiquitous across microbiota of human and pig populations, they probably relied on different genetic elements for their dissemination within each population.IMPORTANCE There is growing concern that antibiotic resistance genes could spread from the husbandry environment to human pathogens through dissemination mediated by mobile genetic elements. In this study, we investigated the contribution of mobile genetic elements to the abundance of highly prevalent antibiotic resistance genes found in commensal bacteria of both human and pig intestinal microbiota originating from the same region. Our results reveal that for most of these antibiotic resistance genes, the abundance is not explained by the same mobile genetic element in each host, suggesting that the human and pig microbial communities promoted a different set of mobile genetic carriers for the same antibiotic resistance genes. These results deepen our understanding of the dissemination of antibiotic resistance genes among and between human and pig gut microbiota.

3.
J Environ Sci (China) ; 76: 259-266, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30528016

RESUMO

Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512 mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-∆phzF-tetR(31)-tet(31)-∆glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.


Assuntos
Aeromonas caviae/efeitos dos fármacos , Aeromonas caviae/genética , Genes Bacterianos/genética , Oxitetraciclina/farmacologia , Águas Residuárias/microbiologia , Aeromonas caviae/fisiologia , Biofilmes , Genótipo , Fenótipo , Resistência a Tetraciclina/genética , Sequenciamento Completo do Genoma
4.
PLoS Genet ; 13(2): e1006602, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28152054

RESUMO

The emergence and spread of antibiotic resistance among Acinetobacter spp. have been investigated extensively. Most studies focused on the multiple antibiotic resistance genes located on plasmids or genomic resistance islands. On the other hand, the mechanisms controlling intrinsic resistance are still not well understood. In this study, we identified the novel subclass of aminoglycoside nucleotidyltransferase ANT(3")-II in Acinetobacter spp., which comprised numerous variants distributed among three main clades. All members of this subclass can inactivate streptomycin and spectinomycin. The three ant(3")-II genes, encoding for the three ANT(3")-II clades, are widely distributed in the genus Acinetobacter and always located in the same conserved genomic region. According to their prevalence, these genes are intrinsic in Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter gyllenbergii. We also demonstrated that the ant(3")-II genes are located in a homologous recombination hotspot and were recurrently transferred among Acinetobacter species. In conclusion, our findings demonstrated a novel mechanism of natural resistance in Acinetobacter spp., identified a novel subclass of aminoglycoside nucleotidyltransferase and provided new insight into the evolutionary history of intrinsic resistance genes.


Assuntos
Acinetobacter/genética , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Recombinação Homóloga , Nucleotidiltransferases/genética , Acinetobacter/classificação , Acinetobacter/enzimologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Eletroforese em Gel de Poliacrilamida , Interações Hospedeiro-Patógeno , Humanos , Testes de Sensibilidade Microbiana , Nucleotidiltransferases/metabolismo , Filogenia , Especificidade da Espécie , Espectinomicina/metabolismo , Espectinomicina/farmacologia , Estreptomicina/metabolismo , Estreptomicina/farmacologia
5.
Appl Environ Microbiol ; 82(21): 6454-6462, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565618

RESUMO

Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302 IMPORTANCE: Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Esterco/microbiologia , Microbiologia do Solo , Resistência a Tetraciclina/genética , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Biologia Computacional , Biblioteca Gênica , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Gado , Metagenômica , Sus scrofa , Suínos
6.
Environ Microbiol ; 18(10): 3494-3508, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27120080

RESUMO

Antibiotics are routinely used in modern livestock farming. The manure from medicated animals is used for the fertilization of arable crops, which in turn leads to the accumulation of antibiotic resistance genes (ARGs) in the environment. This is a potentially serious public health issue, yet the identities of the bacterial taxa involved in ARG persistence are as yet undetermined. Using soil-manure microcosm experiments, we investigated the relationship between (i) the persistence of diverse ARGs and (ii) the dynamics of bacterial community members. We were able to identify, for the first time, the bacterial taxa involved in ARG enrichment in manured soils. They were gut-associated Clostridium species, and environmental species of Acinetobacter and Pseudomonas genera, all of them closely related to important nosocomial pathogens. Our data provide new clues on the routes by which ARGs may spread from farms to medical clinics.


Assuntos
Acinetobacter/genética , Antibacterianos/farmacologia , Clostridium/genética , Farmacorresistência Bacteriana , Pseudomonas/genética , Microbiologia do Solo , Acinetobacter/efeitos dos fármacos , Acinetobacter/metabolismo , Agricultura , Animais , Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Meio Ambiente , Esterco , Pseudomonas/efeitos dos fármacos , Pseudomonas/metabolismo , Solo/química
7.
Environ Microbiol ; 17(5): 1560-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25059531

RESUMO

The Bacillus cereus group is composed of Gram-positive spore-forming bacteria of clinical and ecological importance. More than 200 B. cereus group isolates have been sequenced. However, there are few reports of B. cereus group antibiotic resistance genes. This study identified two functional classes of macrolide phosphotransferases (Mphs) in the B. cereus group. Cluster A Mphs inactivate 14- and 15-membered macrolides while Cluster B Mphs inactivate 14-, 15- and 16-membered compounds. The genomic region surrounding the Cluster B Mph gene is related to various plasmid sequences, suggesting that this gene is an acquired resistance gene. In contrast, the Cluster A Mph gene is located in a chromosomal region conserved among all B. cereus group isolates, and data indicated that it was acquired early in the evolution of the group. Therefore, the Cluster A gene can be considered an intrinsic resistance gene. However, the gene itself is not present in all strains and our comparative genomics analyses showed that it is exchanged among strains of the B. cereus group by the mean of homologous recombination. These results provide an alternative mechanism to intrinsic resistance.


Assuntos
Bacillus cereus/enzimologia , Bacillus cereus/metabolismo , Farmacorresistência Bacteriana/genética , Macrolídeos/farmacologia , Fosfotransferases/genética , Antibacterianos/farmacologia , Bacillus cereus/classificação , Bacillus cereus/genética , Sequência de Bases , Genômica , Família Multigênica , Filogenia , Plasmídeos/genética , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...